Properly setting dataloader and callback for validation in pytorch DDP

pytorch distributed data parallel(DDP) is very useful and relatively well provided for creating a distributed training setup. However, the provided documentations and tutorial are mostly about “training” part and didn’t talk much about validation callbacks that run during training.

It is easy to think just using DistributedSampler for the validation dataloader would do all the work for you like it did in training dataloader, but it doesn’t. There are two main problems.

(more…)

pytorch implementation of sinusoidal position encoding

There are existing sinusoidal position encoding modules out there, but the ones that I confronted were mostly assuming the position to be incrementing from 0 to the size of sequence. For example, when a token embedding sequence with shape of (B, L, D_token) is given then the sinusoidal position encoding module will take this tensor as input and manually create a tensor (B,L) where the values for each row is (0,1,2,3, …., L-1) and then apply sinusoidal encoding on this.

(more…)